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Bootstrap Confidence Intervals for the Mean of Zero-truncated Poisson-Ishita
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Abstract

Many situations involve count data containing non-zero values and the zero-truncated Poisson-Ishita
distribution can be used to model such data. However, confidence interval estimation for the mean has not yet
been examined. In this study, the percentile, simple, and biased-corrected and accelerated bootstrap confidence
intervals were examined in terms of coverage probability and average length via Monte Carlo simulation. The
results indicate that attaining the nominal confidence level using the bootstrap confidence intervals was not
possible for small sample sizes regardless of the other setting. Moreover, when a sample size was large, the
performances of the bootstrap confidence intervals were not substantially different. Overall, the biased-
corrected and accelerated bootstrap confidence interval outperformed the others, even for small sample sizes.
Lastly, the bootstrap confidence intervals were used to estimate the population mean for the zero-truncated
Poisson-Ishita distribution via the number of unrest events in the southern border area of Thailand, the results of
which match those from the simulation studly.
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Introduction

The Poisson distribution is a discrete probability distribution that measures the probability of a given
number of events happening in specific regions of time or space (Kissell and Poserina, 2017; Andrew and Michael,
2022). Data such as the number of orders a firm will receive tomorrow, the number of calls the firm receives next
week for help concerning an “easy-to-assemble” toy, the number of defects in a finished product, the number
of customers arriving at a checkout counter in a supermarket from 3 to 6 p.m., etc, (Siegel, 2016) follow a
Poisson distribution.

The probability mass function (p.m.f.) of a Poisson distribution is defined as

-4 9X

A , x=012,.., 1>0, (1)
x!

px;2) =2

where e is a constant approximately equal to 2.71828 and A is the parameter of the Poisson distribution. This
probability model is can be used to analyze data containing zeros and positive values that have low occurrence
probabilities within a predefined time or area range (Sangnawakij, 2021). However, probability models can
become truncated when a range of possible values for the variables is either disregarded or impossible to
observe. Indeed, zero truncation is often enforced when one wants to analyze count data without zeros. David
and Johnson (1952) developed the zero-truncated Poisson (ZTP) distribution, which has been applied to datasets
of the length of stay in hospitals, the number of published journal articles in various disciplines, the number of
children ever born to a sample of mothers over 40 years old, and the number of passengers in cars (Hussain,

2020). The zero-truncated distribution’s p.m.f. can be derived as

P, (%; 0)

—— x=123,.., 2)
1- po(O;g)

p(x;0) =

where p,(x;6) is the p.m.f. of the un-truncated distribution. Shukla and Shanker (2019) defined the p.m-. of the

Poisson-Ishita (PI) distribution as

0 x2+3x+(6°+26° +6+2)

, x=012,.., 6>0. (3)
(6°+2) @+

po(X;a) =

The mathematical and statistical properties of the PI distribution for modeling biological science data were
established by Shukla and Shanker (2019). The PI distribution arises from the Poisson distribution when
parameter A follows the Ishita distribution proposed by Shanker and Shukla (2017) with probability density
function (p.d.f.)

f(ﬂ;9)=930—3(6’+/12)e"‘”, 1>0,0>0. (@)
+2

Shanker and Shukla (2017) showed that the p.d.f. in (4) is a better model than the exponential, Lindley
(Lindley, 1958) and Akash (Shanker, 2015) distributions for modeling lifetime data. Many distributions have been
introduced as an alternative to the zero-truncated Poisson distribution for handling over-dispersion in data, such
as the zero-truncated Poisson-Lindley (ZTPL) (Ghitany et al., 2008), zero-truncated Poisson-Sujatha (ZTPS) (Shanker

and Fesshaye, 2015) and zero-truncated Poisson-Akash (ZTPA) (Shanker, 2017b) distributions.
Recently, Shukla et al. (2020) proposed the zero-truncated Poisson-Ishita (ZTPI) distribution and its
applications. The moment, coefficient of variation, skewness, kurtosis and the index of dispersion of ZTPI

distribution had been proposed. The method of moments and the maximum likelihood method have also been
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derived for estimating its parameter. Furthermore, when the ZTPI distribution was applied to two real data, it was
more suitable than ZTP, ZTPL, ZTPS and ZTPA distributions.

To the best of our knowledge, no research has been conducted on estimating the bootstrap confidence
intervals for the mean of the ZTPI distribution. Bootstrap confidence intervals provide a way of quantifying the
uncertainties in statistical inference based on a sample of data. The concept is to run a simulation study based
on the actual data for estimating the likely extent of sampling error (Wood, 2004). Therefore, the objective of the
current study is to assess the efficiencies of three bootstrap confidence intervals for the population mean of
ZTPI distribution, namely, the percentile bootstrap (PB), the simple bootstrap (SB), and the bias-corrected and
accelerated (BCa) bootstrap methods. Because a theoretical comparison is not possible, we conduct a simulation
study to compare their performances and used the results to determine the best-performing bootstrap

confidence interval based on the coverage probability and the average length.

Theoretical Background

Compounding of probability distributions is a sound and innovative technique to obtain new probability
distributions to fit data sets not adequately fit by common parametric distributions. Shukla and Shanker (2019)
proposed a new compounding distribution by compounding Poisson distribution with Ishita distribution, as there
is a need to find more flexible model for analyzing statistical data. The p.mf. of the Poisson-Ishita distribution is
given by in (3).

Let X be a random variable which follow ZTPI distribution with parameter @, it is denoted as

X~ZTPI(@). Using Equations (2) and (3), the p.m.f. of ZTPI distribution can be obtained as

6° X2 +3x+(6° +20° +0+2)

5 2 3 2 " , Xx=12,3,..., 6>0.
+20" +0° +660° +60+2 (6+1)

p(x;0) = 7

The plots of ZTPI distribution with some specified parameter values € shown in Figure 1.

0=0.5 0=1
8 | &
(=} =]
= - = -
] H e ‘
=] =]
8 “lln.... g s
=] T T T T IS} T T T T 1
5 10 15 20 2 4 6 8 10 12
X X
0=1.5 0=2
©
[}
<
c _
<
= ] oS 7
L = _
= o = o
o
o | ‘||I- o | | | |
° T T T T © T 1 1 1
2 4 6 8 1 2 3 4 5 6 7
X X

Figure 1. The plots of the mass function of the ZTPI distribution with € =0.5, 1, 1.5 and 2
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The expected value and variance of X are as follows:

0° +30° +30" +76° +180% +180 + 6
E(X)=u= PR E— (5)
0(6° +26" +6° +60° +60+2)

and

_(0+D)(6° +46° +60° + 270 +690° +986° +1366° +2086° +1806° + 726 +12)

var(X) = o -
0% (6° +20* +6° +60% +60+2)

The point estimator of 6 is obtained by maximizing the log-likelihood function logL(x;8) or the
logarithm  of  joint pmf. of  X,,X,,..X,. Therefore, the maximum likelhood (ML)

estimator for 6 of the ZTPI distribution is derived by the following processes:

a "
2 2 nlog(es+294+93+692+69+2j_zxi 109(0+1)
—logL(x;0)=— =
26 20

+Zn‘llog[xi2 +3x +(6° +20* + 0+ 2)]
i=1

_3n_n(50"+80° +30° +120+6) nx +Zn: (30 +460+1)
0 60°+20°+60°+60°+60+2 O0+1 Fx2+3x +(6°+260°+60+2)

Solving the equation a—a‘glog L(x;0)=0 for €, we have the non-linear equation

3n n(50°+86° +30° +120+6) X 3 (36° +46+1) _
0 6°+20'+0°+60°+60+2 0+1 T x2+3x +(0*+20°+0+2)

where X = in /n denotes the sample mean. Since the ML estimator for 8 does not provide the closed-form
i=1

solution, the non-linear equation can be solved by the numerical iteration methods such as Newton-Raphson
method, bisection method and Ragula-Falsi method. In this paper, we use maxLik package (Henningsen and
Toomet, 2011) with Newton-Raphson method for ML estimation in the statistical software R.

The point estimator of the population mean (/&) can be estimated by replacing the parameter 6 with
the ML estimator for @ shown in Equation (5). Therefore, the point estimator of the population mean (g) is

given by

0° +36° +30* +76° +186° +180 +6
0(0° +20* +6° +60* +60+2)

/i\l:

where @ is the ML estimator for . It is obvious that the point estimator of the population mean () is different

from the parameter estimator ().
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Bootstrap Confidence Interval Methods
In this study, we focus on the three bootstrap confidence interval methods that are most popular in
practice: percentile bootstrap, simple bootstrap, and bias-corrected and accelerated bootstrap confidence
intervals.
1. Percentile bootstrap (PB) method
The percentile bootstrap confidence interval is the interval between the (a/2)x100 and
(1-(a/2))x100 percentiles of the distribution of u estimates obtained from resampling or the distribution of
[, where u represents a parameter of interest and « is the level of significance (e.g., @ = 0.05 for 95%
confidence intervals) (Efron, 1982). A percentile bootstrap confidence interval for  can be obtained as follows:
1) B random bootstrap samples are generated,
2) a parameter estimate " is calculated from each bootstrap sample,
3) all B bootstrap parameter estimates are ordered from the lowest to highest, and
)

4) the (1-a)100% percentile bootstrap confidence interval is constructed as follows:
Clpg :[ﬁ;r)lﬁ(*s) ) (6)

where /}(*a) denotes the o™ percentile of the distribution of #° and 0<r<s<100. For example, a 95%

percentile bootstrap confidence interval with 1000 bootstrap samples is the interval between the 2.5 percentile
value and the 97.5 percentile value of the 1000 bootstrap parameter estimates.
2. Simple bootstrap (SB) method
The simple bootstrap method is sometimes called the basic bootstrap method and is a method as
easy to apply as the percentile bootstrap method. Suppose that the quantity of interest is x4 and that the
estimator of u is 4. The simple bootstrap method assumes that the distributions of g—u and i — i are

approximately the same (Meeker et al. 2017). The (1-)100% simple bootstrap confidence interval for u is

Clgg =[ 241 ity 2= i |, (7)

A

where the quantiles ,&(*r) and [z(*s) are the same percentile of empirical distribution of bootstrap estimates 6"

used in (6) for the percentile bootstrap method.
3. Bias-corrected and accelerated (BCa) bootstrap method
To overcome the over coverage issues in percentile bootstrap confidence intervals (Efron and
Tibshirani, 1993), the BCa bootstrap method corrects for both bias and skewness of the bootstrap parameter
estimates by incorporating a bias-correction factor and an acceleration factor (Efron, 1987; Efron and Tibshirani,

1993). The bias-correction factor Z; is estimated as the proportion of the bootstrap estimates less than the

original parameter estimate £,

where @ is the inverse function of a standard normal cumulative distribution function (e.g, ®*(0.975) ~1.96).

The acceleration factor @ is estimated through jackknife resampling (i.e., “leave one out” resampling), which
involves generating n replicates of the original sample, where n is the number of observations in the sample.

The first jackknife replicate is obtained by leaving out the first case (i=1) of the original sample, the second by
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leaving out the second case (i=2), and so on, until n samples of size n—1 are obtained. For each of the

jackknife resamples, [z(_i) is obtained. The average of these estimates is

iZl:/&(fi)

0T

n

A

Then, the acceleration factor a is calculated as follow

E

('[l(') _'[l(fi) )3

32"
('a(‘) _ﬁ(i))z}

4=—11
|

With the values of Z, and @&, the values ¢, and «a, are calculated,

>

=1

5 Z,+z Z,+z
=07, +—2—22 | and a,=®{2 —AO Lalz
1-4(2,+2,,,) 1-4(2, +Zl—a/2)

where z_,, is the a quantile of the standard normal distribution (e.g. z,,,, =—-1.96). Then, the (1-«)100% BCa

bootstrap confidence interval for g is as follows
CIBca :[[’(*a1)’ﬁ:az):|' (8)

where f,, denotes the o™ percentile of the distribution of 4.

Simulation Study

In this study, the bootstrap confidence intervals for the mean of a ZTPI distribution are determined.
Because a theoretical comparison is not possible, a Monte Carlo simulation study was designed using R version
4.2.2 statistical software (lhaka and Gentleman, 1996) and conducted to compare the performances of three
bootstrap confidence intervals for the mean in a ZTPI distribution. The study was designed to cover cases with
different sample sizes, as n = 10, 25, 50, 75 and 100, reflecting small to large samples. To observe the effect of
small and large variances, the true parameter (6) was given by 0.25, 0.5, 0.75, 1 and 2, and the population
means u are 12.0523, 6.0968, 4.1094, 3.1111 and 1.7182, respectively. It shows that the mean and variance of
random variables will decrease as the value of 6 increases. B = 1000 bootstrap samples of size n were
generated from the original sample and each simulation was repeated 5000 times. Without loss of generality, the
confidence level (1-a) was set at 0.95. The performances of the bootstrap confidence intervals were compared
in terms of their coverage probabilities and average lengths. The one with a coverage probability greater than or
close to the nominal confidence level means that it contains the true value and can be used to precisely

estimate the confidence interval for the mean.
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Table 1. Coverage probability and average length of the 95% bootstrap confidence intervals for g in the ZTPI

distribution

Coverage probability Average length
§ o “ PB SB BCa PB SB BCa

10 2 1.7182 0.8596 0.8124 0.9354 1.2000 1.2003 1.3755
1 3.1111 0.8946 0.8666 0.9096 2.5049 2.5059 2.6504

0.75 4.1094 0.8860 0.8706 0.8910 3.2019 3.1999 3.3505

0.5 6.0968 0.8814 0.8652 0.8878 4.5973 4.5999 4.8053

0.25 12.0523 0.8838 0.8740 0.8872 8.5869 8.5910 8.9717

25 2 1.7182 0.9134 0.8948 0.9378 0.8239 0.8239 0.8773
1 3.1111 0.9220 0.9056 0.9306 1.6627 1.6635 1.7086

0.75 4.1094 0.9276 0.9174 0.9294 2.1769 21772 2.2318

0.5 6.0968 0.9244 0.9170 0.9272 3.1100 3.1124 3.1889

0.25 12.0523 0.9212 0.9152 0.9268 5.7835 5.7859 5.9211

50 2 1.7182 0.9310 0.9204 0.9400 0.5950 0.5946 0.6146
1 3.1111 0.9432 0.9352 0.9420 1.2053 1.2057 1.2248

0.75 4.1094 0.9402 0.9362 0.9400 1.5667 1.5678 1.5877

0.5 6.0968 0.9430 0.9370 0.9424 2.2455 2.2473 2.2779

0.25 12.0523 0.9356 0.9334 0.9358 4.1784 4.1760 4.2344

75 2 1.7182 0.9334 0.9222 0.9426 0.4883 0.4887 0.5002
1 3.1111 0.9416 0.9364 0.9408 0.9908 0.9903 1.0022

0.75 4.1094 0.9436 0.9390 0.9434 1.2886 1.2887 1.3004

0.5 6.0968 0.9404 0.9380 0.9418 1.8493 1.8475 1.8651

0.25 12.0523 0.9466 0.9422 0.9474 3.4443 3.4450 3.4761

100 2 1.7182 0.9396 0.9286 0.9454 0.4237 0.4237 0.4311
1 3.1111 0.9436 0.9398 0.9444 0.8605 0.8602 0.8672

0.75 4.1094 0.9416 0.9358 0.9444 1.1208 1.1205 1.1286

0.5 6.0968 0.9466 0.9456 0.9462 1.6084 1.6074 1.6187

0.25 12.0523 0.9416 0.9420 0.9382 2.9885 2.9857 3.0071

The results of the study are reported in Table 1 and Figures 2-3. For n = 10, the coverage probabilities of
the three confidence intervals tended to be less than 0.90, except in a few cases where the values of u are less
or equal to 3.1111 for BCa bootstrap method. The nominal confidence level of SB method is difficult to reach in
circumstances where ¢ =1.7182 and n=10. Generally, as sample size increases, the coverage probability tends
to increase and approach 0.95. The average length also obviously increases when the value of u increases; this
is because of the relationship between the variance and u value. Unsurprisingly, as sample size increases, the
average length falls. It can be as small as approximately 0.8239 when u is at 1.7182 and the sample size is 25;
the largest average length, 59211, occurs when £=12.0523 and n=25 in the case of BCa method.
Furthermore, the average lengths of PB method are similar to those of SB method in all situations.

The performances of the three confidence intervals differed when the variance of the distribution was
small (i.e., var(X)= 5.0185,1.2602 for x=3.1111, 1.7182, respectively) and n was small (i.e, n=25); the BCa
bootstrap method outperform the PB and SB methods in terms of coverage probability. For a small sample size,

a larger variance (i.e., var(X)=>59.3808, 17.2077, 8.4358 for x=12.0523, 6.0968, 4.1094, respectively) provided

similar performances from all three confidence intervals.
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Figure 2. Coverage probability of the 95% bootstrap confidence intervals for g in the ZTPI distribution when (@) N =10 (b)
nN=25 () n=50 (d n=100

Numerical Example

We used a real-world example to demonstrate the applicabikity of the bootstrap confidence intervals
for the mean of the ZTPI distribution established in the preceding section. The number of unrest events
occurring in the southern border area of Thailand from July 2020 to October 2022 collected by the Southern
Border Area News Summarizes (SBAN Summarizes) (http://summarise.wbns.oas.psu.ac.th) was used for this
example (the total sample size is 28). The number of unrest events per month during this time period in the five
southern provinces of Pattani, Yala, Narathiwat, Songkhla, and Satun is reported in Table 2 and Figure 4. For the
goodness-of-fit test (Turhan, 2020) in Table 2, it is obvious from the chi-square statistic and p-value that the ZTPI
distribution gives much closer than the ZTPL and ZTPS distributions. Therefore, a ZTPI distribution with
6 =0.4532 is suitable for this dataset. The point estimator of the population mean is 6.7100. Table 3 and Figure 5
reported the 95% bootstrap confidence intervals for the mean of the ZTPI distribution. The estimated parameter
6 is between 0.25 and 0.5. The results correspond with the simulation results for n=25 because the average
lengths of the PB and SB methods were shorter than those of the BCa bootstrap method. According to the

simulation results, the coverage probability should be 0.92.
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Figure 3. Average length of the 95% bootstrap confidence intervals for u in the ZTPI distribution when (@) N =10 (b) N =25 ()
n=50 (d) n=100

Table 2. The number of unrest events and expected frequency in the southern border area of Thailand

Expected frequency
Number of unrest events Observed frequency
ZTPL ZTPS ZTPI
1 3 3.0731 2.3069 2.0016
2 1 3.1064 2.7231 2.5728
3 3 2.9694 2.8944 2.8708
4 2 2.7370 2.8675 2.9250
5 a4 2.4591 2.7018 2.7995
6 3 2.1678 2.4518 2.5601
7 4 1.8832 2.1611 2.2616
>8 8 9.6040 9.8934 10.0086
ML Estimator 0.2900 0.4252 0.4532
Chi-square statistic 5.5611 4.2384 4.0875
df. 6 6 6
p-value 0.4741 0.6444 0.6648
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Figure 4. The number of unrest events in the southern border area of Thailand

Table 3. The 95% bootstrap confidence intervals and corresponding widths using all intervals for the mean in

the unrest events example

Methods Confidence intervals Widths
PB (5.1867, 8.2769) 3.0908
SB (5.1456, 8.1951) 3.0495
BCa (5.1896, 8.4390) 3.2494

gl
; ‘
U BEIZC-I PIE SIE
method

Figure 5. The 95% bootstrap confidence intervals for the mean in the unrest events example

Conclusions

The bootstrap confidence intervals of the mean of the zero-truncated Poisson-Ishita distribution are
investigated in this study. At n =10, all coverage probabilities are substantially lower than 0.90. A sample size of 25 is
still insufficient to achieve the nominal confidence level for all 8's and bootstrap confidence intervals. When the
sample size is large enough, i.e., greater than or equal to 50, the coverage probabilities from three bootstrap methods,
as well as the average length, are not markedly different. According to our findings, the BCa bootstrap method

performs best even with small sample sizes as long as the variance of the ZTPI distribution is not too large.
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